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Abstract

The present study has numerically investigated two-dimensional laminar flow over a circular cylinder with uniform

planar shear, where the free-stream velocity varies linearly across the cylinder. Numerical simulations using the

immersed-boundary method are performed for the ranges of 50pRep160, 0pKp0:2, and B ¼ 0:1 and 0:05, where Re,

K and B are the Reynolds number, the nondimensional shear rate and the blockage ratio, respectively. Results show

that the flow depends significantly on the blockage ratio as well as the Reynolds number and shear rate. The vortex-

shedding frequency and the mean drag remain nearly constant or slightly decrease with increasing shear rate. On the

other hand, the mean lift is exerted from the side of the higher free-stream velocity to that of the lower one, and its

magnitude increases linearly in proportion to the shear rate. Flow statistics as well as instantaneous flow fields are

presented to identify the characteristics of the uniform-shear flow and then to understand the underlying mechanism.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When the free-stream velocity exceeds a certain critical value in flow past a bluff body, vortex shedding occurs due to

the flow instability in the near wake, resulting in periodically oscillating drag and lift forces. Such fluctuating forces may

cause structural vibrations, acoustic noise and resonance, which in some cases can trigger structure failure or enhance

mixing in the wake (Williamson, 1996). Therefore, it is very important to appropriately control vortex shedding in

practical engineering environments.

Uniform flow past a circular cylinder has been accepted as a building-block problem for understanding the vortex

dynamics in the wake behind a bluff body and, thus, a considerable number of studies on the uniform flow have been

performed so far [refer to Williamson (1996) and Zdravkovich (1997) for more detailed reviews]. In most bluff-body

flows of engineering interest, however, the free-stream is not uniform, but sheared. As evidently observed, air and tidal

currents have nonzero velocity gradients in space and, thus, can be regarded as sheared. Such examples involve

buildings and transport vehicles on the ground and pipelines under the sea. Nevertheless, shear flow or nonuniform flow

over a circular cylinder has been investigated less extensively than uniform flow. Therefore, more systematic study on

the shear flow is required for further improved understanding of engineering bluff-body flows. For such a study, the
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shear flow can be assumed, as a first approximation, to have a constant lateral velocity gradient in the free-stream, that

is a linear velocity profile across the cylinder diameter.

As depicted in Fig. 1(a), the free-stream with a linear velocity profile, U ¼ Uc þ Gy, passes over a circular cylinder

with a diameter, D, where Uc and G are, respectively, the streamwise velocity at the center-line ðy ¼ 0Þ and the lateral

velocity gradient ðG ¼ dU=dyÞ. Therefore, the flow is governed by the three nondimensional flow parameters: one is the

Reynolds number, Re ¼ UcD=n, and another is the nondimensional velocity gradient or shear rate, K ¼ GD=Uc, where

n is the kinematic viscosity; the third is introduced in what follows. In most of the previous experimental studies on the

uniform-shear flow (Kiya et al., 1980; Kwon et al., 1992; Hayashi et al., 1993; Sumner and Akosile, 2003), the lateral

width, W, of the flow domain was restricted such that the streamwise velocity in the free-stream was constantly positive

ðU40Þ, that is the free-stream could not flow in the reverse direction due to the imposed shear rate. Accordingly, the

blockage effect should be inevitably involved in the previous experimental results (Sumner and Akosile, 2003).

Likewise, the present study will also restrict the lateral width to a finite extent, implying that the blockage ratio, defined

as B ¼ D=W , is the third flow parameter governing the uniform-shear flow.

So far, quite a few studies have been performed on uniform-shear flow over a circular cylinder and the typical ones

are listed, along with the adopted flow conditions, in Table 1. They have mainly investigated the effects of Reynolds

number and shear rate on the vortex-shedding frequency, the magnitude and direction of the mean lift, the magnitude

of the mean drag, and so on in the uniform-shear flow. Despite many achievements to date, some controversial issues

have to be further resolved for improved understanding of the bluff-body flow. As Lei et al. (2000) and Sumner and
Fig. 1. (a) Schematic diagram of uniform-shear flow over a circular cylinder and (b) the computational mesh around the cylinder for

the case of B ¼ 0:1 ðM �N ¼ 513� 193Þ.

Table 1

Flow conditions used in previous studies

Researchers Flow conditions Method

Re K B ð%Þ

Jordan and Fromm (1972) 400 See caption � 0 CFD

Tamura et al. (1980) 40; 80 020:4 � 0 CFD

Kiya et al. (1980) 3521500 020:25 2:7217 EM

Yoshino and Hayashi (1984) 80 020:4 � 0 CFD

Kwon et al. (1992) 60021600 020:25 6:7216 EM

Hayashi et al. (1993) 6� 104 020:045; 0:15 6:7 EM

Wu and Chen (2000) � 022:67 � 0 CFD

Lei et al. (2000) 8021000 020:25 12:5 CFD

Sumner and Akosile (2003) 429� 104 0:0220:07 1:822:7 EM

CFD ¼ computational fluid dynamics, EM ¼ experimental measurement. Jordan and Fromm (1972) used the time-averaged flow of a

turbulent jet for the uniform-shear flow case.
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Akosile (2003) also pointed out, a few apparent discrepancies among previous studies on the uniform-shear flow remain

unresolved yet. It is implied that more investigations on the uniform-shear flow are necessary, which motivates the

present study. Representative controversial issues among previous studies are enumerated as follows.

Kiya et al. (1980) and Kwon et al. (1992) claimed that the vortex-shedding frequency, f, or the Strouhal number,

St ¼ fD=Uc, increased with increasing shear rate mainly for large shear rates. Lei et al. (2000) and Sumner and Akosile

(2003), on the other hand, claimed that the shedding frequency remained nearly constant or slightly decreased.

Moreover, Kiya et al. (1980) reported that vortex shedding completely disappeared for sufficiently large shear rates

ðKX0:06Þ in the range of 43oReo220 considered in their experimental study. In the numerical study of Lei et al.

(2000), however, the vortex shedding still occurred even under flow conditions similar to those of Kiya et al. ðRe480Þ.

The direction of the mean lift force has also to be addressed with regard to the conflicting issues among previous studies.

Jordan and Fromm (1972), Hayashi et al. (1993), Lei et al. (2000) and Sumner and Akosile (2003) claimed that the mean

lift was exerted from the side of the higher free-steam velocity to that of the lower one, whereas Tamura et al. (1980) and

Yoshino and Hayashi (1984) asserted that it was in the opposite direction. In addition, Wu and Chen (2000) argued that

the mean-lift direction should vary depending on the magnitude of shear rate.

Fig. 2 shows the variations of the mean drag coefficient, CD, the r.m.s. (root mean square) value of lift-coefficient

fluctuations, C0L, and the vortex-shedding frequency Strouhal number, St, with the blockage ratio for uniform flow over

a circular cylinder ðK ¼ 0Þ at Re ¼ 100, together with the results of Park et al. (1998) and Norberg (2001) ðB � 0Þ.

Details of the numerical method will be explained in the next section. Results show that the flow statistics, CD, C0L and

St, remain nearly constant for small blockage ratios, which are comparable to those of Park et al. (1998) and Norberg

(2001). However, they all sharply deviate from their respective corresponding values achieved at B � 0 with increasing

blockage ratio in the range of B\0:05. Very similar results can also be found in Zdravkovich (1997) and Chakraborty et

al. (2004). Such a series of results indicate that the blockage ratio may exert a significant effect not only on the uniform

flow, but also on the uniform-shear flow.

In previous experimental studies (Kiya et al., 1980; Kwon et al., 1992), the Reynolds number ðRe ¼ UcD=nÞ and
shear rate ðK ¼ GD=UcÞ were adjusted, mainly by changing the cylinder diameter, D, rather than the free-stream

velocity profile, Uc and G, while restricting the lateral width of the flow domain due to facility limitations. This led to a

serious problem that the blockage ratio (B ¼ D=W ) could not be kept constant when the cylinder diameter was

changed. Sumner and Akosile (2003) argued that, in such a case, the blockage ratio should affect the uniform-shear flow

to a considerable degree. Unlike the previous experimental studies (Kiya et al., 1980; Kwon et al., 1992), they exerted

efforts to have the change in the blockage ratio as small as possible; refer to Table 1. The blockage effect on the

uniform-shear flow also has to be thoroughly investigated. In most previous studies, however, this has not been done.

The present study will investigate the blockage effect on uniform-shear flow over a circular cylinder and then provide

results necessary to elucidate plausible causes of apparent discrepancies among previous studies on the uniform-shear

flow. The main advantage of a numerical simulation is that the shear rate can be varied independently of the Reynolds

number and blockage ratio, which cannot easily be done (or is nearly impossible) in experiments.

The objectives of the present study are to numerically investigate the characteristics of two-dimensional laminar

uniform-shear flow over a circular cylinder, and then to further examine the corresponding underlying mechanism. For

the study, we will concentrate on scrutinizing the effects of Reynolds number, shear rate and blockage ratio on the

uniform-shear flow. Numerical simulations using the immersed-boundary method developed by Kim et al. (2001) are
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Fig. 2. Mean drag coefficient, root-mean-squared lift-coefficient fluctuation, and vortex-shedding frequency with respect to B for

uniform flow over a circular cylinder ðK ¼ 0Þ at Re ¼ 100.
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performed for simulating flows over or inside complex geometries. In the immersed-boundary method, both momentum

forcing and mass source/sink are applied on the body surface or inside the body to satisfy the no-slip condition and

continuity on or around the immersed boundary, leading to significant memory and CPU savings and easy grid

generation compared to the unstructured grid method. In the present study, we will deal with the flow in the ranges of

50pRep160, 0pKp0:2, and B ¼ 0:1 and 0:05 that is assumed to be two-dimensional and laminar.
2. Numerical method

Numerical simulations of two-dimensional unsteady incompressible flow with uniform planar shear over a circular

cylinder are conducted using the immersed-boundary method. The appropriate governing equations can be written as

qui

qt
þ
qðuiujÞ

qxj

¼ �
qp

qxi

þ
1

Re

q2ui

qxjqxj

þ f i, (1)

qui

qxi

� q ¼ 0. (2)

Here, xi are the Cartesian coordinates, ui the corresponding velocity components, and p the pressure. All the variables

are nondimensionalized by the cylinder diameter, D, and the streamwise velocity of the free-stream at the center-line

ðy ¼ 0Þ, Uc. For example, the velocity components are nondimensionalized by Uc, while the pressure by rU2
c . Notice

that the notation sets ðu; vÞ and ðx; yÞ are used interchangeably with ðu1; u2Þ and ðx1;x2Þ, respectively, in this paper. The

discrete-time momentum forcing, f i, is applied to satisfy the no-slip condition on the immersed boundary, whereas the

mass source/sink, q, is to satisfy the mass conservation for the cell containing the immersed boundary. Therefore, f i and

q are defined, respectively, only at the faces and center of the cell on the immersed boundary or inside the body.

The governing equations, (1) and (2), are integrated in time using a second-order semi-implicit fractional-step

method: a third-order Runge–Kutta method (RK3) for the convection terms and a second-order Crank-Nicolson

method for the diffusion terms. In this method, a pseudo-pressure, f, is introduced to correct the velocity field so that

the continuity equation is satisfied at each computational time step. In space, on the other hand, the governing

equations are resolved with a finite-volume approach on a staggered mesh. Here, the Cartesian ðx; yÞ coordinate system
is adopted as a basis for the application of the immersed-boundary method. In addition, a second-order linear or

bilinear interpolation scheme is applied to satisfy the no-slip condition on the immersed boundary. More details

associated with the immersed-boundary method are described in Kim et al. (2001).

Since, in the present study, the reverse-direction flow is not allowed in the free-stream, the lateral width of the flow

domain and, thus, the maximum applicable shear rate are determined depending on the adopted blockage ratio. The

present computational domain extends to jxjp40 and jyjp1=ð2BÞ and the circular cylinder is located with its center at

ð0; 0Þ. In addition, the shear rate to be applied, depending on the blockage ratio, is Kp2B; for example Kp0:2 for

B ¼ 0:1 and Kp0:1 for B ¼ 0:05. A Dirichlet boundary condition of the uniform-shear steady flow, u ¼ 1þ Ky and

v ¼ 0, is used at the inflow ðx ¼ �40Þ, and a convective outflow condition, qui=qtþ cqui=qx ¼ 0, is used at the outflow

ðx ¼ 40Þ where c is the space-averaged streamwise exit velocity. The no-slip condition, u ¼ 0 and v ¼ 0, is imposed on

the immersed boundary or the cylinder surface expressed with x2 þ y2 ¼ 0:52. At the far-field boundaries ½y ¼ �1=ð2BÞ�,

on the other hand, two kinds of boundary conditions are attempted for checking their suitability to the present study:

one is a constant-vorticity condition, o ¼ �K (or qu=qy ¼ K) and v ¼ 0, and the other is a constant-velocity condition,

u ¼ 1� K=ð2BÞ and v ¼ 0. It is found that the two boundary conditions do not lead to any significant difference in the

computational results. Therefore, we will present only the results achieved from the former condition in the present

paper. In addition, the Neumann condition of qf=qxn ¼ 0 (xn is the normal direction) is applied at the boundary to

solve the Poisson equation for the pseudo-pressure, f.
For more efficient simulations, the computational domain is spatially resolved such that a dense clustering of grid

points is applied near the cylinder, especially in the wake zone, while away from the cylinder a coarser grid is used. In

the present study, a uniform distribution of 64� 64 grid points is used within the cylinder diameter, whereas the

tangential-hyperbolic grid distribution is in the outer region. As the lateral width of the flow domain changes, the

number of total grid points in the y direction is properly adjusted such that the resolution close to the cylinder is

preserved. For example, the spatial resolutions are M �N ¼ 513� 193 for B ¼ 0:1 [see Fig. 1(b)] and 513� 225 for

B ¼ 0:05.
A computational time step of Dt ¼ 0:00820:01 is used for time advancement in all the simulations performed in the

present study. All the simulations are continued until the flow reaches a fully developed state, where all the flow
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Table 2

Validation of the numerical method: parametric study for uniform-shear flow over a circular cylinder at Re ¼ 100 and K ¼ 0:2 in the

case of B ¼ 0:1

Re K M �N Dxc ðDycÞ Dt St CL CD C0L C0D

513� 193 1/64 0.0100 0.1696 �0.1732 1.3943 0.2699 0.0254

100 0.2 705� 289 1/96 0.0064 0.1697 �0.1721 1.3941 0.2702 0.0254

(0.06) (0.64) (0.01) (0.11) (0.00)

Here, in parentheses are the relative errors (%) with respect to the result from M �N ¼ 513� 193 and Dt ¼ 0:01. Dxc and Dyc denote

the magnitudes of grid spacings inside and around the cylinder.

Table 3

Validation of the numerical method: comparison study for unconfined uniform flow over a circular cylinder ðK ¼ 0Þ at Re ¼ 100

(M �N ¼ 513� 193 and Dt ¼ 0:01)

CD C0L St Remarks

Present 1.33 0.228 0.165 B ¼ 0:0125
Williamson (1996) 0.164

Park et al. (1998) 1.33 0.165

Norberg (2001) 0.227 0.165

Stojković et al. (2002) 1.34 0.165
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characteristics are analyzed. Since the fully developed flow is independent of initial conditions, all the simulations may

be started with arbitrary initial conditions.

To confirm the spatial and temporal convergence, parametric studies for the uniform-shear flow at Re ¼ 100 and

K ¼ 0:2 have been performed and the typical results are presented in Table 2. Here, CL and CD are the mean (time-

averaged) lift and drag coefficients [i.e. CL ¼ ð
R tþT

t
CL dtÞ=T , where T is a period in the fully developed state], while C0L

and C0D are the r.m.s values of the lift- and drag-coefficient fluctuations [i.e. C0L ¼ f
R tþT

t
ðCL � CLÞ

2 dtÞ=Tg1=2]. The

relative errors in the table show that the computational results obtained with the chosen parameter values are well

converged with respect to the spatial and temporal resolutions. Subsequently, the same numerical simulations have also

been performed on uniform flow over a circular cylinder ðK ¼ 0Þ for a very low blockage ratio ðB ¼ 0:0125Þ, and their

typical results are compared with the previously published data in Table 3 and Fig. 3. The comparisons show that the

present results are in excellent agreement with the existing ones, certainly validating the present immersed-boundary

method.
3. Results

After verifying the numerical method, we have conducted numerical simulations by systematically varying the

Reynolds number, shear rate and blockage ratio in the fairly wide ranges of 50pRep160, 0pKp0:2, and B ¼ 0:1 and

0:05.

3.1. Flow statistics

3.1.1. Vortex-shedding frequency

Fig. 4 shows the variations of the vortex-shedding frequency with the Reynolds number, shear rate and blockage

ratio in uniform-shear flow over a circular cylinder. According to Fig. 4(a), with increasing Reynolds number, the

shedding frequency markedly increases all over the ranges of the shear rate and blockage ratio considered in the present

study. On the other hand, the shedding frequency remains nearly constant or slightly decreases with increasing shear

rate, while it increases with increasing blockage ratio. In the laminar regime ðReo200Þ, the effect of Reynolds number
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on the vortex-shedding frequency is overall very strong compared with those of the shear rate and blockage ratio. To

more closely reveal the shear effect, the variation of the shedding frequency with the shear rate is presented in Fig. 4(b)

for the uniform-shear flow at Re ¼ 100. With increasing shear rate, the shedding frequency remains nearly constant for

low shear rates and then slightly decreases for K\0:1. Such correlation between the shedding frequency and shear rate

agrees well with those of Lei et al. (2000) and Sumner and Akosile (2003), but substantially differs from those of Kiya et

al. (1980) and Kwon et al. (1992).

Kiya et al. (1980) and Kwon et al. (1992) varied the cylinder diameter, while fixing the velocity profile in the free-

stream (Uc and G), to adjust the Reynolds number ðRe ¼ UcD=nÞ and shear rate ðK ¼ GD=UcÞ in their experimental

studies on the uniform-shear flow. Consequently, they could not keep the blockage ratio constant while the flow

parameters were varied. For example, the blockage ratios were in the ranges of B ¼ 2:7217ð%Þ and 6:7216ð%Þ in the

studies of Kiya et al. (1980) and Kwon et al. (1992), respectively, and thus the variance widths were excessively large; see

Table 1. According to Fig. 4(b), the difference in the vortex-shedding frequency between two blockage ratios of

B ¼ 5ð%Þ and 10ð%Þ is larger than that between two shear rates of K ¼ 0 and 0:2 for the uniform-shear flow at
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Re ¼ 100, which obviously indicates the significance of the blockage effect in identifying exactly the correlation between

the shedding frequency and shear rate. It is, therefore, implied that the blockage effect may provide a meaningful clue

for plausible causes of apparent discrepancies among previous studies on the flow. Recently, Sumner and Akosile (2003)

made an effort to keep the blockage ratio as constant as possible in their experimental study ½B ¼ 1:822:7ð%Þ�, to avoid

a probably erroneous interpretation due to its large variance. Even in the uniform-shear flow at very high Reynolds

numbers ðRe ¼ 429� 104Þ, they found that the shedding frequency slightly decreased with increasing shear rate, which

is in good agreement with the present study.

Kiya et al. (1980) reported that vortex shedding completely disappeared for sufficiently large shear rates in the

uniform-shear flow in the range of 43oReo220 considered in their experiment. Then, they claimed that the critical

Reynolds number, Rec, above which vortex shedding occurred, increased linearly in proportion to the shear rate for

KX0:06. On the contrary, such a phenomenon was not observed in the numerical study of Lei et al. (2000) which was

performed under similar flow conditions ðRe480Þ. It is generally known that, in the uniform flow (K ¼ 0 and B � 0),

vortex shedding occurs when the Reynolds number exceeds approximately 47 ðReXRec � 47Þ (Park et al., 1998; Fey et

al., 1998; Norberg, 2001). Fig. 5(a) confirms that the observation can also be exactly reproduced for the uniform flow

ðK ¼ 0Þ at a very small blockage ratio ðB ¼ 0:0125Þ in the present study. To see the variation of the critical Reynolds

number with the shear rate, numerical simulations for the uniform-shear flow at Re ¼ 45 and 47 in the case of B ¼ 0:1
have been performed and typical results are presented in Fig. 5(b). In all the simulations performed, vortex shedding

still occurs at Re ¼ 47 but completely disappears at Re ¼ 45, implying that the critical Reynolds number ðRec �

46247Þ hardly relates to the shear rate and blockage ratio for the whole ranges of K and B considered. It is suggested

that additional three-dimensional simulations should be performed to figure out plausible causes of the discrepancy

between the present study and that of Kiya et al. (1980) on the uniform-shear flow.

3.1.2. Lift and drag coefficients

In uniform-shear flow over a circular cylinder, the direction of the lift force is not only of great engineering

importance, but also one of the most controversial issues among previous studies. Fig. 6 shows the variations of the

mean (time-averaged) lift coefficient, CL, and the r.m.s. value of lift-coefficient fluctuations, C0L, with the Reynolds

number, shear rate and blockage ratio. In the case of a positive shear rate ðK40Þ, the mean lift coefficient is negative

ðCLo0Þ all over the ranges of the Reynolds number and blockage ratio considered in the present study, indicating that

the mean lift is exerted from the side of the higher free-stream velocity to that of the lower one. Despite the difference in

the Reynolds number, the present results agree well with those of Jordan and Fromm (1972), Hayashi et al. (1993), Lei

et al. (2000), and Sumner and Akosile (2003), but substantially differ from those of Tamura et al. (1980), Yoshino and

Hayashi (1984), and Wu and Chen (2000). Such discrepancies were also pointed out by Lei et al. (2000) and Sumner and

Akosile (2003), but a plausible reason has not yet been forthcoming.

According to Fig. 6, the magnitude of the mean lift, �CL or jCLj, slightly decreases with increasing either Reynolds

number or blockage ratio, but greatly increases linearly in proportion to the shear rate. To quantify the linear relation

between the mean lift and shear rate, the least-squares fit for the uniform-shear flow at Re ¼ 100 provides CL�� 0:96K

and �0:86K for B ¼ 0:05 and 0:1, respectively. On the other hand, the lift fluctuation largely increases with increasing

Reynolds number, but slightly increases or remains nearly constant with increasing either shear rate or blockage ratio.

In addition, the lift fluctuation is very low without regard to the shear rate and blockage ratio at Re ¼ 50, near the

critical Reynolds number ðRec � 46247Þ.
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Meanwhile, it is remarkable to compare the present result on the mean lift with that for the cylindrical bubble whose

outer surface does not sustain any shear stress. In general, the cylindrical-bubble flow can be reasonably analyzed by

considering inviscid flow past a circular cylinder with a uniform lateral velocity-gradient. For that study, Tsien (1943)

quantified the shear effect using a stream function, c, derived from the potential theory as follows [see Zdravkovich

(1997) for more details]:

c ¼ r�
1

4r

� �
sin yþ

K

2
r2 sin2 yþ

1

32r2
cos 2y

� �
(3)

satisfying

1

r

q
qr

r
qc
qr

� �
þ

1

r2
qc

qy2
¼ K , (4)

1

r

qc
qy

����
r¼1=2

¼ 0. (5)

Here, Eq. (4) implies a constant background vorticity, o ¼ �K, throughout the flow field, while Eq. (5) denotes a zero

normal velocity on the cylinder surface. Computing the velocity profile and then the pressure distribution on the

cylinder surface from Eq. (3), through potential theory, yields the following lift coefficient:

CL ¼ pK . (6)

Similarly, the position of the stagnation point, yo, can also be computed as follows:

sin yo ¼
�1þ ½1þ ðK=2Þ2�1=2

K
. (7)

For a positive shear rate ðK40Þ, Eq. (6) denotes a positive lift coefficient ðCL40Þ, while Eq. (7) indicates the existence

of the stagnation points on the upper surface of the cylinder. It is, therefore, implied that, even if the stagnation points

exist on the upper cylinder surface, the lift force acts from the side of the lower free-stream velocity to that of the higher

one (þy direction). In addition, its magnitude increases linearly in proportion to the shear rate.

The Tsien (1943) study tells that the lift direction for the solid cylinder may be totally different from that for the

cylindrical bubble. Such similar discussions can work for the case of a sphere: refer to Legendre and Magnaudet (1998),

Kurose and Komori (1999), and Bagchi and Balachandar (2002). These studies showed that the lift direction was

positive for the spherical bubble. On the other hand, for the solid sphere, the lift direction was negative at moderate to

high Reynolds numbers, whereas it was positive at moderate to low Reynolds numbers. From the results, it can be

concluded that the negative lift force in uniform-shear flow over a circular cylinder is probably due to the no-slip

condition on the surface.

The variations of the mean drag coefficient, CD, and the r.m.s. value of drag-coefficient fluctuations, C0D, with the

Reynolds number, shear rate and blockage ratio are shown in Fig. 7. The mean drag decreases with increasing Reynolds

number and simultaneously the decline rate also decreases. In the case of shear rate, the mean drag remains nearly

constant for low shear rates, and then slightly decreases with increasing shear rate for K\0:1. The variation behavior

agrees well with those of previous studies (Kwon et al., 1992; Hayashi et al., 1993; Lei et al., 2000; Sumner and Akosile,
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2003). In addition, with increasing blockage ratio, the mean drag greatly increases regardless of the Reynolds number

and shear rate, which implies that the blockage effect plays an important role in the characteristics of uniform-shear

flow over a circular cylinder. Nevertheless, the blockage effect has been treated as trivial in most of the previous studies

on uniform-shear flow. On the other hand, the drag fluctuation that is negligibly small near the critical Reynolds

number increases approximately linearly in proportion to ðRe�RecÞ. In addition, the drag fluctuation also rises with

increasing shear rate. However, the blockage effect on the drag fluctuation is not so large.

The behavior of the lift and drag forces presented in Figs. 6 and 7 can be represented more clearly in the form of

phase diagrams by plotting CD as a function of CL. The phase diagrams according to the shear rate and blockage ratio

for the uniform-shear flow at Re ¼ 100 are shown in Fig. 8. All the phase diagrams have a closed shape of the infinity

symbol ð1Þ, which indicates that all the flows become completely time-periodic in the fully developed state. As evident
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in the figure, the position of a phase diagram denotes the mean lift and drag and the size denotes the corresponding

fluctuation amplitudes. The phase diagrams shown in Fig. 8 confirm again the significant effects of shear rate and

blockage ratio on the uniform-shear flow. In some cases, especially, the position of the closed curve depends more

strongly on the blockage ratio than on the shear rate, implying that the blockage ratio may significantly alter the flow

characteristics. It is also shown that the blockage ratio affects more strongly the drag force than the lift. On the other

hand, the phase diagram hardly varies for CL40 even for the change of shear rate. However, the phase diagram greatly

varies for CLo0, thus overall decreasing the mean drag force or the minimum lift force. These observations are in exact

agreement with those depicted in Figs. 6 and 7.

3.1.3. Mean pressure coefficient

It is generally known that, in flow over a bluff body such as a circular cylinder and a sphere, the effect of friction on

the lift force is negligibly small compared to the pressure (Park et al., 1998; Fey et al., 1998; Mittal and Kumar, 2003).

Therefore, to further understand the effects of Reynolds number and shear rate on the lift force, it is essential to know

exactly the pressure distribution around the cylinder surface. Fig. 9 shows the mean (time-averaged) pressure

coefficient, Cp, according to the Reynolds number and shear rate. The mean pressure coefficient is defined as

CpðyÞ ¼ 2½pðyÞ � pc�=rU2
c , where pc is the pressure corresponding to the free-stream velocity, Uc, at the center-line

ðy ¼ 0Þ far away from the cylinder and pðyÞ is the mean pressure at y. Note that the range of y ¼ 02180� corresponds to

the side of the higher free-stream velocity. As expected, the mean pressure for the zero-shear flow (at K ¼ 0) is

symmetric about y ¼ 02180� (front and base points), leading to a zero mean lift. As the shear rate increases, the flow

becomes asymmetric. That is, the stagnation point involving the maximum pressure on the cylinder surface moves to the

higher-velocity side. Simultaneously, the pressure hardly changes in the range of y � 3002360�, whereas, out of the

range, it greatly increases [see Fig. 9(a)]. A simple analysis of force balance indicates that the mean lift force acts from

the side of the higher free-stream velocity to that of the lower one, and the magnitude greatly increases with increasing

shear rate. On the other hand, as the Reynolds number increases, the pressure greatly decreases in the range of

y � 302300�, whereas, out of the range, it slightly varies [see Fig. 9(b)]. Therefore, the mean lift force decreases in

magnitude with increasing Reynolds number. These observations again confirm the results shown in Fig. 6.

3.2. Wake dynamics

Instantaneous flow fields have been investigated to further understand vortex shedding in uniform-shear flow over a

circular cylinder and its corresponding underlying mechanism. Results show that, although the flow statistics depend

significantly on the blockage ratio as shown in Figs. 4, 6 and 7, the appearance of the instantaneous flow field does not

change so markedly. In the present paper, therefore, only the results for the uniform-shear flow at B ¼ 0:1 will be

presented. Fig. 10 shows the variation of the instantaneous vorticity contours with the shear rate for the uniform-shear

flow at Re ¼ 100. In the figure, the vorticity contours at two different times corresponding to the maximum and

minimum lift forces in one complete period are presented for each shear rate. Note that the background vorticity in

each case is o ¼ �K and, thus, negative.

In the case of no shear ðK ¼ 0Þ, vortices of positive and negative signs are alternately shed from the cylinder, and

consequently move downstream. Thus, the flow becomes symmetric about the center-line ðy ¼ 0Þ in the sense of time-

averaging. In the case of nonzero shear ðK40Þ, on the other hand, vortex shedding also occurs. Overall, with a negative

background vorticity, the vortices of positive sign are weakened whereas those of negative sign are strengthened. At the

same time, in the near wake behind the circular cylinder, the positive-signed vortices become more elongated, whereas

the negative-signed ones become more round. The scenario for such vortex shapes can be explained as follows.

Immediately after each negative-signed vortex is shed on the upper side (þy direction), the downstream end of the

vortex moves toward the lower side, that is toward the side of the lower free-stream velocity. Afterwards, the

downstream end flows downstream more slowly than the upstream end due to the difference in the free-stream velocity

and, thus, the vortex becomes of a round shape. Moreover, it is seen that the round shape becomes more conspicuous

with increasing shear rate. For each positive-signed vortex shed from the lower side, on the contrary, the downstream

end moves toward the side of the higher free-stream velocity. Therefore, the downstream end moves downstream faster

than the upstream one, so that the vortex becomes elongated.
Fig. 10. Instantaneous vorticity contours at two times of the maximum (upper) and minimum (lower) lift forces in one complete period

with respect to K for the uniform-shear flow at Re ¼ 100 and B ¼ 0:1: K ¼ (a) 0.0, (b) 0.1, and (c) 0.2. Note that the background

vorticity corresponds to �K in each case. Contour levels on the left side (wider plots) are from �0:3 to 0.3 in increments of 0.05 and

�0:4 to �3 in increments of 0.2, whereas those on the right side (closer plots) are from �0:3 to 0.3 in increments of 0.1 and �0:4 to �3

in increments of 0.4. Negative values are shown as dashed.
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Due to the negative background vorticity, all the vortices are shifted in the clockwise direction as they travel

downstream and, thus, the vortex street is inclined toward the side of the lower free-stream velocity. As is evident in

Fig. 10(c), the positive- and negative-signed vortices are located, respectively, on the sides of the lower and higher free-

stream velocities. With increasing shear rate, therefore, the distance between two subsequent negative-signed vortices

increases, but for the positive-signed ones, the distance decreases.

Fig. 11 shows streamline contours corresponding to the vorticity contours presented in Fig. 10. It is known that the

magnitude and direction in the mean lift force is determined mainly by the stagnation point. The figure indicates that, as

the shear rate increases, the angle of attack of the free-stream increases and, thus, the stagnation point on the cylinder

moves in the clockwise ðþyÞ direction. According to the present numerical results, the stagnation points for K ¼ 0, 0:1
and 0:2 move, respectively, as much as 0�, 3:7� and 9:2� (in the case of B ¼ 0:1).
Fig. 12 shows the time evolution of the instantaneous vorticity field in one complete period for the uniform-shear flow

at Re ¼ 100 and K ¼ 0:2. This figure indicates the way the shed vortices are formed and convected downstream. It is

seen that there are two alternate vortices over one period and the negative-signed vortex becomes strengthened and

round-shaped due to the negative background vorticity ðo ¼ �Ko0Þ. On the contrary, the positive-signed vortex
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becomes weakened and more elongated. Far downstream, the round-shaped negative-signed vortex gradually becomes

oval-shaped because of the difference in the free-stream velocity between the upper and lower sides about the vortex

induced due to the negative background vorticity. On the contrary, the positive-signed vortex, originally of an

elongated shape, becomes more and more elongated due to the negative background vorticity. Afterwards, the

downstream end of the positive-signed vortex becomes very weak in strength and finally disappears, whereas the

upstream end still remains oval-shaped.
4. Conclusions

In the present study, we have investigated numerically two-dimensional laminar flow over a circular cylinder

with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder, for the purpose of

identifying the hydrodynamic force and wake dynamics and then describing the underlying mechanism. In this study,

numerical simulations were performed, using the immersed boundary method developed by Kim et al. (2001), on the
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uniform-shear flow in the ranges of 50pRep160, 0pKp0:2, and B ¼ 0:1 and 0:05. Particularly, we have also

examined the effect of lateral width in the flow domain, that is the blockage effect, to figure out plausible causes of

apparent discrepancies among previous studies on the flow. Conclusions drawn in the present study can be summarized

as follows.

(i) The vortex-shedding frequency significantly increased with increasing Reynolds number, while it remained nearly

constant or slightly decreased with increasing shear rate. With increasing blockage ratio, on the other hand, the

shedding frequency slightly increased all over the ranges of the Reynolds number and shear rate.

(ii) The mean lift was directed from the side of the higher free-stream velocity to the lower one. The magnitude of the

mean lift slightly decreased with increasing Reynolds number or blockage ratio, but largely increased linearly in

proportion to the shear rate. The lift fluctuation greatly increased with increasing Reynolds number, while it slightly

increased or remained nearly constant with increasing either shear rate or blockage ratio.

(iii) The mean drag decreased with increasing Reynolds number, and remained nearly constant or slightly decreased

with increasing shear rate. With increasing blockage ratio, on the other hand, the mean drag greatly increased. The drag

fluctuations greatly increased with increasing Reynolds number or shear rate, but the blockage effect was not so

significant.

(iv) There have been a few controversial issues among previous studies on uniform-shear flow over a circular cylinder.

The present results showed that the blockage effect on the flow was comparable to the shear effect. It was implied that

the blockage ratio might be one of the plausible causes of apparent discrepancies among previous studies.

(v) In the case of nonzero shear ðK40Þ, the background vorticity in the free-stream was negative. Therefore, the

positive-signed vortices in the near-wake behind the circular cylinder became weakened and elongated, while the

negative-signed ones became strengthened and round-shaped.
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Stojković, D., Breuer, M., Durst, F., 2002. Effect of high rotation rates on the laminar flow around a circular cylinder. Physics of

Fluids 14, 3160–3178.

Sumner, D., Akosile, O.O., 2003. On uniform planar shear flow around a circular cylinder at subcritical Reynolds number. Journal of

Fluids and Structures 18, 441–454.

Tamura, H., Kiya, M., Arie, M., 1980. Numerical study on viscous shear flow past a circular cylinder. Bulletin of the JSME 23,

1952–1958.

Tsien, H.S., 1943. Symmetrical Zhukovski airfoils in shear flow. Quarterly of Applied Mathematics 1, 130–148.

Williamson, C.H.K., 1989. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers.

Journal of Fluid Mechanics 206, 579–627.

Williamson, C.H.K., 1996. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics 28, 477–539.

Wu, T., Chen, C.-F., 2000. Laminar boundary-layer separation over a circular cylinder in uniform shear flow. Acta Mechanica 144,

71–82.

Yoshino, F., Hayashi, T., 1984. Numerical solution of flow around a rotating circular cylinder in uniform shear flow. Bulletin of the

JSME 27, 1850–1857.

Zdravkovich, M.M., 1997. Flow around Circular Cylinders, vol. 1: Fundamentals. Oxford University Press, Oxford.


	Uniform-shear flow over a circular cylinder at low �Reynolds numbers
	Introduction
	Numerical method
	Results
	Flow statistics
	Vortex-shedding frequency
	Lift and drag coefficients
	Mean pressure coefficient

	Wake dynamics

	Conclusions
	Acknowledgments
	References


